FPGA implementation of Hebbian neural
network for Engineering Educational

Marco A. Moreno-Armendariz’, Osvaldo Espinosa Sosa! and Floriberto Ortiz
Rodriguez?

! Centro de Investigacién en Computacién-IPN
CIC-IPN
AV. Juan de Dios B4tiz S/N, México D.F.,07738, México
marco_morenoQ@cic.ipn.mx
and
2Departamento de Control Automatico
CINVESTAV-IPN
A.P. 14-740, Av.IPN 2508, México D.F., 07360, México

Abstract. In this paper we are working in a new development of edu-
cational material for advanced courses in engineering. One of the hottest
issues is the implementation of different computer intelligence algorithms
in programmable logic technologies. We start this goal with the Hebbian
neural network as an introduction of neural network courses. This arti-
cle shows the design of neural networks using the Hardware Description
Language VHDL and its implementation in Field Programmable Gate
Arrays FPGAs. The code is totally open so that the user can verify the
value of internal signals and make modifications to the structure of the
design which can be very useful when a student is learning neural net-
works and digital design. The main advantages that are offered are that
the design can be totally monitored and modified, is portable and it isn’t

nhecessary to view designs like a black box in where we do not know the
internal structure of the system.

1 Introduction

Nowadays, programmable technologies have penetrated in many areas and places
in where technology is present. One of the best cases is the Field Programmable
Logic Array FPGA’s , and the evolution of these devices has allowed to increase
the density and capacity allowing integration of complete Systems on a Chip
(SoC), in addition, these elements are offered in low cost and low power con-
sumption devices. Designers have two options to obtain a design, the first one
is the complete design of the circuit and second one is to purchase existing de-
signs called CORE'’s that allows designers to use it as if they were a black bo.x
allowing to diminish dedicated effort. A disadvantage of the second option is
that it implies the cost of acquisition of these CORE’s. Although there are free
ones, these usually are tied to a family of FPGALt’s and this creates depende'ncy.
Another disadvantage is that they are not susceptible to be modified nor verified

© A. Argiiclles, J. L. Oropeza, O. Camacho, O. Espinosa (Eds.)
Computer Engineering.
Research in Computing Science 30, 2007, pp. 81-88



82 M. A. Moreno, O. Espinosa and F. Ortiz

its internal state. From an educational point of view, this is unacceptable for our
requirements. On the other hand, design totally one circuit has the advantage to
offer independence of companies, can be portable to any device of any company
and with the characteristic to allow to students to use, monitor and even modify
the characteristics of designs as much as it is required(1].

The designed circuit corresponds to a hebbian neural network. In the field of
neural networks, the non supervised algorithm could be the denominated hebbian
learning method that consists of increasing the value of weights that join two
neurons if they activate simultaneously, and to diminish the value if they activate
on a differential manner. A hebbian neural network can be arranged in a single
layer or several: the inputs propagate to the internal layer, and when coming
out, and after the propagation, the weights change in the indicated form. The
hebbian learning is equivalent to an analysis of main components of inputs.

2 Hebbian neural network

In 1949, Donald Hebb gives the first learning law for an artificial neural net-
work; the main idea is trying to represent how the brain learns at the cellular
level [2]. In the brain, a neuron receives many inputs from a large number of
other neurons through synaptic connections. Hebb ‘s law states that if a neu-
ron A is repeatedly activated by another neuron B, the neuron A will become
more sensitive whenever both of them fire simultaneously. So, this learning can
be viewed as strengthening a synapse according to the correlation between the
activation levels of the neurons it connects. The neuron output signal ynet (k)
for the network in figure 1 can be expressed as [3],

Fig. 1. Hebbian neural network model.

Ynet (k) = sgn (}:w; (k) z: (k)+b) i=1,---,n



FPGA implementation of Hebbian neural network for...

83

where sgn(.) is the signum function. Given a set of training data (z;(k), y:(k)),the

learning law used to update the weight values w; (k) and the bias b(k) are,

w(k+1) = w(k) + zT (k)y (k)
b(k + 1) = b(k) + y(k)

Thus, if the correlation between the input and the output signals, which can
be represented by the product z7 (k)y (k) is positive, it enhances the strength of

the synapse weight value. Otherwise, if it is negative, the weight value should be
decreased [4].

This net is a linear associator network, since associate one or more pairs of
vectors (z(k),y(k)) so that given z(k) as the input, the network will produce
Ynet (k). Furthermost, when a vector close to z(k) is presented, the network will
produce a vector close to y;(k). The representation is (consider b(k) = 0),

Ynet (k) = z(k)w(k)

Suppose the network has learned to associate n pairs of vectors. That is,

wik) = 3T (k)y: (k)

Futher, assume that the vectors z1(k), z2(k),--- ,zn(k) are orthogonal and
of unit length (i.e, they are orthonormal): If J =1, zj(k)zi(k) = l;else it is O.
Then z;(k) can always be transformed into y;(k) by the network without error
because

zi(kywk) = 3 _ (25()T (k) wilk) = w;(k)

In a d-dimensional input space, the maximum possible number of orthogonal
vector is d. Thus, the number of vector pairs that we can associate exactly is
limited to d. If z; °s are not orthogonal, the we get an error when attempting to
retrive y;(k) using z;(k). This error € can be estimated by

€= Z (:BJ(k).’B,T(k)) yi(k)
i#j

In some cases, the weights w(k) can be chosen so that the error ¢ is small.

3 Real time design

In order to make this work, it was used the software provided by Altera d.e-
nominated Quartus II[5], this software allows to capture descriptions of circuits
using the VHDL Hardware Description Language, after that, it makes a synta.x
revision of code. Once the description in VHDL is the correct one, a synthesis
is made to transfer it to an equivalent design of gates and logic elements. It is



84 M. A. Moreno, O. Espinosa and F. Ortiz

Input|Output
T1|T1 K
11 1
1]-1 -1
-1 1 -1
-1}-1 -1

Table 1. Training set for the learning phase.

important to mention that after the synthesis it is possible to use a simulator to
verify the functionality of the circuit, that is, to verify that logically the design
behaves in a correct form when the corresponding inputs are applied to it and
the generated outputs corresponds to results expected by designers. When sim-
ulation is correct, it comes to make a process called “place and route” that has
the objective to locate and connect the different components of the design inside
the selected FPGA (Altera DE2 [6] with cyclone EP2C35F672C6 in our case).
With the obtained data, it is possible to be know the total amount of resources
used by the design, as well as the internal delays that are very important when
it is desired to make a timing simulation (essential when it is desired that the
circuit continues working when it operates to high frequencies of clock). These
tools allow to experienced users as well as beginners to make the process before
mentioned.

3.1 Set the experiment

From 2, we take n = 2 and we select the case of learning the AND-gate as shown

in Table 1.
Apply the learning laws in (1) to this training set and using as an initial
conditions Wy = (0,0), bo = 1, we obtain the following values:

W=(22) b=-1

Now we describe the main parts of the VHDL code that was used to imple-
ment the hebbian neural network.

Entity For educational purposes we design an entity that allows to the student
to manipulate different signals:

1. Clock signal: The student generate this signal to check the transitory values
of the weights and bias of the neural network.

2. Reset signal: The student set the initial values for the weights and bias.

3. Aprender signal: The student can set the neural network in learning and
testing mode.

As an output ports we manage four seven segment displays to show values
of the parameters of the network during learning or the testing steps.



FPGA implementation of Hebbian neural network for... 85

library IEEE; use IEEE.STD_LOGIC_1164.ALL; use
IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_SIGNED.ALL; use
work.pack_red_heb_and.ALL;

entity red_heb_and is

Port (
clk : in std_logic;
reset ¢ in std_logic;
aprender : in std_logic;
disp_O_wl : out std_logic_vector(6 downto 0);
disp_1_wl : out std_logic_vector(6 downto 0);
disp_O_w2 : out std_logic_vector(6 downto 0);
disp_1_w2 : out std_logic_vector(6 downto 0);
disp_O_b : out std_logic_vector(6 downto 0);
disp_1_b : out std_logic_vector(6 downto O);
disp_O_y : out std_logic_vector(6 downto 0);
disp_1.y : out std_logic_vector(6 downto 0)

);

end red_heb_and;

Architecture This fragment of code shows the implementation of hebbian neu-
ral network in two ways: the learning and the testing modes.

architecture una_neurona of red_heb_and is
begin
process(clk, reset)
begin
if reset=’1’ then
w1l <= "0010";
w2 <= "0011";
b <= "0001";
y <= "0000";
elsif (clk’event and clk=’1’) then
if aprender=’1’ then
w1l <= wl + rom_x1 * rom_y;
W2 <= w2 + rom_x2 * rom_y;
b <=b + rom_y;

else
I <= rom_x1 * wi + rom_x2 * w2 + b;
if I < 0 then
y <= "1111";
else
y <= "0001";
end if;

end if;



86 M. A. Moreno, O. Espinosa and F. Ortiz

end if;
end process;
end una_neurona;

Since this kind of neural network uses bimodal format (+1,-1) we use the
two's complement representation for the output of the seven-segment displays.

3.2 Simulations

Now we present the simulation results of the VHDL code in figure 2. Here both
phases are reviewed, first the learning signal (aprender) is activated, so we can
see how the transitory values of weights w;, w2 and bias b change in,

disp_O_wi1, disp_1_wl, disp_O_w2, disp_1_w2, disp_O_b, disp_1_b

Then, the testing mode starts where these values are fixed and we send other
input values to check the response of the neural network yne: in,

disp_O_y, disp_1_y

Due to the response is correct, we successfully finish the simulation and we
proceed to download this program to the FPGA.

For this implementation we use 53 logic elements, 59 pins and 4 embedded
multipliers, that is < 1 percent of the total resources of the Altera Cyclone
FPGA.

4 Conclusion

From an educational point of view, the design and simulation of neuronal net-
works as well as its implementation in programmable logic devices constitute an
important element in formation of students related to design of digital circuits,
electronics as well as digital control and related areas. Although commercial
designs exists from several companies, its use generates technological depen-
dency, therefore to provide a description with Hardware Description Languages
such as VHDL in this case allows to have an open technology which does not
have dependency disadvantages and even allows the access to all internal signals
and full modification of the structure. Students of graduate and undergraduate
courses can take advantage of this contribution to improve their abilities. After
the simulations and the implementations, the design proved to be very efficient
for demonstrations and practices in laboratory.

Acknowledgments

Dr. M. A. Moreno-Armendariz thanks to the Centro de Investigacién en Com-
putacién of the IPN (CIC-IPN) and the Secretaria de Investigacién y Posgrado
of the IPN, under Research Grant no. 20070612 and CONACyT. Also, the au-
thors thanks to Altera [6] for the donation of the Altera DE2 kits and academic
licenses of Quartus II software.



FPGA implementation of Hebbian neural network for... 87

References

1.

Romero-Troncoso, R. de J., Ordaz-Moreno A., Vite-Frias J.A., Garcia-Perez A.,

8-bit CISC Microprocessor Core for Teaching Applications in the Digital Systems
Laboratory, Reconfig 06 (IEEE), (2006)

- Fu L., Neural Networks in Computer Intelligence, McGraw-Hill, (1994) pp. 55-58
. Pardo F., Boluda J.A., VHDL Lenguaje para sintesis y modelado de circuitos,

Alfaomega, 2da. edicién,(2004) pp. 273-309

- Sheu B.J., Choi J., Neural information processing and VLSI, Kluwer Academic

Publishers,(1995) pp. 21

. (2007) Altera: Quartus 11 [Online). Available:

http://www.altera.com/education / demonstrations/online/design-software/onl-
design-software-demos.html

- (2007) Altera: University Program. [Online]. Available:

http://www.altera.com/education /univ/unv-index.html



88 M. A. Moreno, O. Espinosa and F. Ortiz

Fig. 2. Simulation waveform of the hebbian neural network.



